In this hands-on exercise, I learn how to handle geospatial data in R by using sf package and performing data science tasks using tidyverse package.
This code chunk performs 3 tasks: - A list called packages will be created and will consists of all the R packages required to accomplish this hands-on exercise. - Check if R packages on package have been installed in R and if not, they will be installed. - After all the R packages have been installed, they will be loaded.
packages = c('sf', 'tidyverse')
for (p in packages){
if(!require(p, character.only = T)){
install.packages(p)
}
library(p,character.only = T)
}
Data used: - MP14_SUBZONE_WEB_PL, a polygon feature layer in ESRI shapefile format, - CyclingPath, a line feature layer in ESRI shapefile format, and - PreSchool, a point feature layer in kml file format.
mpsz = st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source
`C:\aisyahajit2018\IS415\IS415_blog\_posts\2021-08-26-hands-on-exercise-2\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
cyclingpath = st_read(dsn = "data/geospatial", layer = "CyclingPath")
Reading layer `CyclingPath' from data source
`C:\aisyahajit2018\IS415\IS415_blog\_posts\2021-08-26-hands-on-exercise-2\data\geospatial'
using driver `ESRI Shapefile'
Simple feature collection with 3336 features and 2 fields
Geometry type: MULTILINESTRING
Dimension: XY
Bounding box: xmin: 12831.45 ymin: 28347.98 xmax: 42799.89 ymax: 48948.15
Projected CRS: SVY21
preschool = st_read("data/geospatial/pre-schools-location-kml.kml")
Reading layer `PRESCHOOLS_LOCATION' from data source
`C:\aisyahajit2018\IS415\IS415_blog\_posts\2021-08-26-hands-on-exercise-2\data\geospatial\pre-schools-location-kml.kml'
using driver `KML'
Simple feature collection with 1925 features and 2 fields
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 103.6824 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range: zmin: 0 zmax: 0
Geodetic CRS: WGS 84
Both mpsz and cycling path have svy21 as the projected coordinates systems.
Only preschool have wgs84 as the projected coordinates systems.
mpsz$geometry
Geometry set for 323 features
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:
st_geometry(mpsz)
Geometry set for 323 features
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 5 geometries:
glimpse(mpsz)
Rows: 323
Columns: 16
$ OBJECTID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15~
$ SUBZONE_NO <int> 1, 1, 3, 8, 3, 7, 9, 2, 13, 7, 12, 6, 1, 5, 1, 1,~
$ SUBZONE_N <chr> "MARINA SOUTH", "PEARL'S HILL", "BOAT QUAY", "HEN~
$ SUBZONE_C <chr> "MSSZ01", "OTSZ01", "SRSZ03", "BMSZ08", "BMSZ03",~
$ CA_IND <chr> "Y", "Y", "Y", "N", "N", "N", "N", "Y", "N", "N",~
$ PLN_AREA_N <chr> "MARINA SOUTH", "OUTRAM", "SINGAPORE RIVER", "BUK~
$ PLN_AREA_C <chr> "MS", "OT", "SR", "BM", "BM", "BM", "BM", "SR", "~
$ REGION_N <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGI~
$ REGION_C <chr> "CR", "CR", "CR", "CR", "CR", "CR", "CR", "CR", "~
$ INC_CRC <chr> "5ED7EB253F99252E", "8C7149B9EB32EEFC", "C35FEFF0~
$ FMEL_UPD_D <date> 2014-12-05, 2014-12-05, 2014-12-05, 2014-12-05, ~
$ X_ADDR <dbl> 31595.84, 28679.06, 29654.96, 26782.83, 26201.96,~
$ Y_ADDR <dbl> 29220.19, 29782.05, 29974.66, 29933.77, 30005.70,~
$ SHAPE_Leng <dbl> 5267.381, 3506.107, 1740.926, 3313.625, 2825.594,~
$ SHAPE_Area <dbl> 1630379.3, 559816.2, 160807.5, 595428.9, 387429.4~
$ geometry <MULTIPOLYGON [m]> MULTIPOLYGON (((31495.56 30..., MULT~
head(mpsz, n=5)
Simple feature collection with 5 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 25867.68 ymin: 28369.47 xmax: 32362.39 ymax: 30435.54
Projected CRS: SVY21
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N
1 1 1 MARINA SOUTH MSSZ01 Y MARINA SOUTH
2 2 1 PEARL'S HILL OTSZ01 Y OUTRAM
3 3 3 BOAT QUAY SRSZ03 Y SINGAPORE RIVER
4 4 8 HENDERSON HILL BMSZ08 N BUKIT MERAH
5 5 3 REDHILL BMSZ03 N BUKIT MERAH
PLN_AREA_C REGION_N REGION_C INC_CRC FMEL_UPD_D
1 MS CENTRAL REGION CR 5ED7EB253F99252E 2014-12-05
2 OT CENTRAL REGION CR 8C7149B9EB32EEFC 2014-12-05
3 SR CENTRAL REGION CR C35FEFF02B13E0E5 2014-12-05
4 BM CENTRAL REGION CR 3775D82C5DDBEFBD 2014-12-05
5 BM CENTRAL REGION CR 85D9ABEF0A40678F 2014-12-05
X_ADDR Y_ADDR SHAPE_Leng SHAPE_Area
1 31595.84 29220.19 5267.381 1630379.3
2 28679.06 29782.05 3506.107 559816.2
3 29654.96 29974.66 1740.926 160807.5
4 26782.83 29933.77 3313.625 595428.9
5 26201.96 30005.70 2825.594 387429.4
geometry
1 MULTIPOLYGON (((31495.56 30...
2 MULTIPOLYGON (((29092.28 30...
3 MULTIPOLYGON (((29932.33 29...
4 MULTIPOLYGON (((27131.28 30...
5 MULTIPOLYGON (((26451.03 30...
plot(st_geometry(mpsz))
plot(mpsz)
plot(mpsz["PLN_AREA_N"])
Projection transformation: Project a simple feature data frame from one coordinate system to another coordinate system
st_crs(mpsz)
Coordinate Reference System:
User input: SVY21
wkt:
PROJCRS["SVY21",
BASEGEOGCRS["SVY21[WGS84]",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]],
ID["EPSG",6326]],
PRIMEM["Greenwich",0,
ANGLEUNIT["Degree",0.0174532925199433]]],
CONVERSION["unnamed",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["Degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
mpsz3414 <- st_set_crs(mpsz, 3414)
st_crs(mpsz3414)
Coordinate Reference System:
User input: EPSG:3414
wkt:
PROJCRS["SVY21 / Singapore TM",
BASEGEOGCRS["SVY21",
DATUM["SVY21",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4757]],
CONVERSION["Singapore Transverse Mercator",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",1.36666666666667,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",103.833333333333,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",1,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",28001.642,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",38744.572,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["northing (N)",north,
ORDER[1],
LENGTHUNIT["metre",1]],
AXIS["easting (E)",east,
ORDER[2],
LENGTHUNIT["metre",1]],
USAGE[
SCOPE["Cadastre, engineering survey, topographic mapping."],
AREA["Singapore - onshore and offshore."],
BBOX[1.13,103.59,1.47,104.07]],
ID["EPSG",3414]]
preschool3414 <- st_transform(preschool, crs = 3414)
st_geometry(preschool3414)
Geometry set for 1925 features
Geometry type: POINT
Dimension: XYZ
Bounding box: xmin: 11203.01 ymin: 25596.33 xmax: 45404.24 ymax: 49300.88
z_range: zmin: 0 zmax: 0
Projected CRS: SVY21 / Singapore TM
First 5 geometries:
listings <- read_csv("data/aspatial/listings.csv")
glimpse(listings)
Rows: 4,252
Columns: 16
$ id <dbl> 50646, 71609, 71896, 71903, 2~
$ name <chr> "Pleasant Room along Bukit Ti~
$ host_id <dbl> 227796, 367042, 367042, 36704~
$ host_name <chr> "Sujatha", "Belinda", "Belind~
$ neighbourhood_group <chr> "Central Region", "East Regio~
$ neighbourhood <chr> "Bukit Timah", "Tampines", "T~
$ latitude <dbl> 1.33432, 1.34537, 1.34754, 1.~
$ longitude <dbl> 103.7852, 103.9589, 103.9596,~
$ room_type <chr> "Private room", "Private room~
$ price <dbl> 80, 178, 81, 81, 52, 40, 72, ~
$ minimum_nights <dbl> 90, 90, 90, 90, 14, 14, 90, 8~
$ number_of_reviews <dbl> 18, 20, 24, 48, 20, 13, 133, ~
$ last_review <date> 2014-07-08, 2019-12-28, 2014~
$ reviews_per_month <dbl> 0.22, 0.28, 0.33, 0.67, 0.20,~
$ calculated_host_listings_count <dbl> 1, 4, 4, 4, 50, 50, 7, 1, 50,~
$ availability_365 <dbl> 365, 365, 365, 365, 353, 364,~
list(listings)
[[1]]
# A tibble: 4,252 x 16
id name host_id host_name neighbourhood_g~ neighbourhood
<dbl> <chr> <dbl> <chr> <chr> <chr>
1 50646 Pleasant R~ 227796 Sujatha Central Region Bukit Timah
2 71609 Ensuite Ro~ 367042 Belinda East Region Tampines
3 71896 B&B Room ~ 367042 Belinda East Region Tampines
4 71903 Room 2-nea~ 367042 Belinda East Region Tampines
5 275343 Convenient~ 1439258 Joyce Central Region Bukit Merah
6 275344 15 mins to~ 1439258 Joyce Central Region Bukit Merah
7 294281 5 mins wal~ 1521514 Elizabeth Central Region Newton
8 301247 Nice room ~ 1552002 Rahul Central Region Geylang
9 324945 20 Mins to~ 1439258 Joyce Central Region Bukit Merah
10 330089 Accomo@ RE~ 1439258 Joyce Central Region Bukit Merah
# ... with 4,242 more rows, and 10 more variables: latitude <dbl>,
# longitude <dbl>, room_type <chr>, price <dbl>,
# minimum_nights <dbl>, number_of_reviews <dbl>,
# last_review <date>, reviews_per_month <dbl>,
# calculated_host_listings_count <dbl>, availability_365 <dbl>
listings_sf <- st_as_sf(listings,
coords = c("longitude", "latitude"),
crs=4326) %>% st_transform(crs = 3414)
glimpse(listings_sf)
Rows: 4,252
Columns: 15
$ id <dbl> 50646, 71609, 71896, 71903, 2~
$ name <chr> "Pleasant Room along Bukit Ti~
$ host_id <dbl> 227796, 367042, 367042, 36704~
$ host_name <chr> "Sujatha", "Belinda", "Belind~
$ neighbourhood_group <chr> "Central Region", "East Regio~
$ neighbourhood <chr> "Bukit Timah", "Tampines", "T~
$ room_type <chr> "Private room", "Private room~
$ price <dbl> 80, 178, 81, 81, 52, 40, 72, ~
$ minimum_nights <dbl> 90, 90, 90, 90, 14, 14, 90, 8~
$ number_of_reviews <dbl> 18, 20, 24, 48, 20, 13, 133, ~
$ last_review <date> 2014-07-08, 2019-12-28, 2014~
$ reviews_per_month <dbl> 0.22, 0.28, 0.33, 0.67, 0.20,~
$ calculated_host_listings_count <dbl> 1, 4, 4, 4, 50, 50, 7, 1, 50,~
$ availability_365 <dbl> 365, 365, 365, 365, 353, 364,~
$ geometry <POINT [m]> POINT (22646.02 35167.9~
Task on hand: Determine the extend of the land need to be acquired and their total area
buffer_cycling <- st_buffer(cyclingpath, dist=5, nQuadSegs = 30)
buffer_cycling$AREA <- st_area(buffer_cycling)
sum(buffer_cycling$AREA)
1642750 [m^2]
mpsz3414$`PreSch Count`<- lengths(st_intersects(mpsz3414, preschool3414))
summary(mpsz3414$`PreSch Count`)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 3.00 5.96 9.00 58.00
top_n(mpsz3414, 1, `PreSch Count`)
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 39655.33 ymin: 35966 xmax: 42940.57 ymax: 38622.37
Projected CRS: SVY21 / Singapore TM
OBJECTID SUBZONE_NO SUBZONE_N SUBZONE_C CA_IND PLN_AREA_N
1 189 2 TAMPINES EAST TMSZ02 N TAMPINES
PLN_AREA_C REGION_N REGION_C INC_CRC FMEL_UPD_D
1 TM EAST REGION ER 21658EAAF84F4D8D 2014-12-05
X_ADDR Y_ADDR SHAPE_Leng SHAPE_Area
1 41122.55 37392.39 10180.62 4339824
geometry PreSch Count
1 MULTIPOLYGON (((42196.76 38... 58
mpsz3414$Area <- mpsz3414 %>% st_area()
mpsz3414 <- mpsz3414 %>%
mutate(`PreSch Density` = `PreSch Count`/Area * 1000000)
hist(mpsz3414$`PreSch Density`)
ggplot(data=mpsz3414,
aes(x= as.numeric(`PreSch Density`)))+
geom_histogram(bins=20,
color="black",
fill="light blue") +
labs(title = "Are pre-school even distributed in Singapore?",
subtitle= "There are many planning sub-zones with a single pre-school, on the other hand, \nthere are two planning sub-zones with at least 20 pre-schools",
x = "Pre-school density (per km sq)",
y = "Frequency")
ggplot(data=mpsz3414,
aes(y = `PreSch Count`,
x= as.numeric(`PreSch Density`)))+
geom_point(color="black",
fill="light blue") +
labs(title = "",
x = "Pre-school density (per km sq)",
y = "Pre-school count")
Done! :)