Hands-on Exercise 8

In this hands-on exercise, I will learn how to perform geographical segmentation by using appropriate R packages. I will also use approriate R packages for performing cluster analysis and visualising clustering results.

Nor Aisyah https://www.linkedin.com/in/nor-aisyah/
10-10-2021

1. The Analytical Question

In geobusiness and spatial policy, it is a common practice to delineate the market or planning area into homogeneous regions by using multivariate data. In this hands-on exercise, we are interested to delineate Shan State, Myanmar into homogeneous regions by using multiple Information and Communication technology (ICT) measures, namely: Radio, Television, Land line phone, Mobile phone, Computer, and Internet at home.

2. Dataset

2 data sets will be used in this study:

Both data sets are download from Myanmar Information Management Unit (MIMU)

3. Install and Load Packages

packages = c('rgdal', 'spdep', 'tmap', 'sf', 'ggpubr', 'cluster', 'factoextra', 'NbClust', 'heatmaply', 'corrplot', 'psych', 'tidyverse')
for (p in packages){
  if(!require(p, character.only = T)){
    install.packages(p)
    }
  library(p,character.only = T)
}

Below are the functions we will be perform using the respective R packages:

4. Data Import and Preparation

4.1 Importing geospatial data into R environment

shan_sf <- st_read(dsn = "data/geospatial", layer = "myanmar_township_boundaries") %>%
  filter(ST %in% c("Shan (East)", "Shan (North)", "Shan (South)"))
Reading layer `myanmar_township_boundaries' from data source 
  `C:\aisyahajit2018\IS415\IS415_blog\_posts\2021-10-10-hands-on-exercise-8\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 330 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 92.17275 ymin: 9.671252 xmax: 101.1699 ymax: 28.54554
Geodetic CRS:  WGS 84

4.1.1 View newly created sf dataframe

shan_sf
Simple feature collection with 55 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 96.15107 ymin: 19.29932 xmax: 101.1699 ymax: 24.15907
Geodetic CRS:  WGS 84
First 10 features:
   OBJECTID           ST ST_PCODE       DT   DT_PCODE        TS
1       163 Shan (North)   MMR015  Mongmit MMR015D008   Mongmit
2       203 Shan (South)   MMR014 Taunggyi MMR014D001   Pindaya
3       240 Shan (South)   MMR014 Taunggyi MMR014D001   Ywangan
4       106 Shan (South)   MMR014 Taunggyi MMR014D001  Pinlaung
5        72 Shan (North)   MMR015  Mongmit MMR015D008    Mabein
6        40 Shan (South)   MMR014 Taunggyi MMR014D001     Kalaw
7       194 Shan (South)   MMR014 Taunggyi MMR014D001     Pekon
8       159 Shan (South)   MMR014 Taunggyi MMR014D001  Lawksawk
9        61 Shan (North)   MMR015  Kyaukme MMR015D003 Nawnghkio
10      124 Shan (North)   MMR015  Kyaukme MMR015D003   Kyaukme
    TS_PCODE               ST_2            LABEL2 SELF_ADMIN ST_RG
1  MMR015017 Shan State (North)    Mongmit\n61072       <NA> State
2  MMR014006 Shan State (South)    Pindaya\n77769       Danu State
3  MMR014007 Shan State (South)    Ywangan\n76933       Danu State
4  MMR014009 Shan State (South)  Pinlaung\n162537       Pa-O State
5  MMR015018 Shan State (North)     Mabein\n35718       <NA> State
6  MMR014005 Shan State (South)     Kalaw\n163138       <NA> State
7  MMR014010 Shan State (South)      Pekon\n94226       <NA> State
8  MMR014008 Shan State (South)          Lawksawk       <NA> State
9  MMR015013 Shan State (North) Nawnghkio\n128357       <NA> State
10 MMR015012 Shan State (North)   Kyaukme\n172874       <NA> State
   T_NAME_WIN
1    rdk;rdwf
2      yif;w,
3       &GmiH
4   yifavmif;
5      rbdrf;
6        uavm
7      z,fcHk
8    &yfapmuf
9   aemifcsdK
10   ausmufrJ
                                                                  T_NAME_M3
1          <U+1019><U+102D><U+102F><U+1038><U+1019><U+102D><U+1010><U+103A>
2                          <U+1015><U+1004><U+103A><U+1038><U+1010><U+101A>
3                                  <U+101B><U+103D><U+102C><U+1004><U+1036>
4  <U+1015><U+1004><U+103A><U+101C><U+1031><U+102C><U+1004><U+103A><U+1038>
5                          <U+1019><U+1018><U+102D><U+1019><U+103A><U+1038>
6                                          <U+1000><U+101C><U+1031><U+102C>
7                          <U+1016><U+101A><U+103A><U+1001><U+102F><U+1036>
8          <U+101B><U+1015><U+103A><U+1005><U+1031><U+102C><U+1000><U+103A>
9  <U+1014><U+1031><U+102C><U+1004><U+103A><U+1001><U+103B><U+102D><U+102F>
10         <U+1000><U+103B><U+1031><U+102C><U+1000><U+103A><U+1019><U+1032>
       AREA                       geometry
1  2703.611 MULTIPOLYGON (((96.96001 23...
2   629.025 MULTIPOLYGON (((96.7731 21....
3  2984.377 MULTIPOLYGON (((96.78483 21...
4  3396.963 MULTIPOLYGON (((96.49518 20...
5  5034.413 MULTIPOLYGON (((96.66306 24...
6  1456.624 MULTIPOLYGON (((96.49518 20...
7  2073.513 MULTIPOLYGON (((97.14738 19...
8  5145.659 MULTIPOLYGON (((96.94981 22...
9  3271.537 MULTIPOLYGON (((96.75648 22...
10 3920.869 MULTIPOLYGON (((96.95498 22...

4.1.2 Reveal the data type of fields

glimpse(shan_sf)
Rows: 55
Columns: 15
$ OBJECTID   <dbl> 163, 203, 240, 106, 72, 40, 194, 159, 61, 124, 71~
$ ST         <chr> "Shan (North)", "Shan (South)", "Shan (South)", "~
$ ST_PCODE   <chr> "MMR015", "MMR014", "MMR014", "MMR014", "MMR015",~
$ DT         <chr> "Mongmit", "Taunggyi", "Taunggyi", "Taunggyi", "M~
$ DT_PCODE   <chr> "MMR015D008", "MMR014D001", "MMR014D001", "MMR014~
$ TS         <chr> "Mongmit", "Pindaya", "Ywangan", "Pinlaung", "Mab~
$ TS_PCODE   <chr> "MMR015017", "MMR014006", "MMR014007", "MMR014009~
$ ST_2       <chr> "Shan State (North)", "Shan State (South)", "Shan~
$ LABEL2     <chr> "Mongmit\n61072", "Pindaya\n77769", "Ywangan\n769~
$ SELF_ADMIN <chr> NA, "Danu", "Danu", "Pa-O", NA, NA, NA, NA, NA, N~
$ ST_RG      <chr> "State", "State", "State", "State", "State", "Sta~
$ T_NAME_WIN <chr> "rdk;rdwf", "yif;w,", "&GmiH", "yifavmif;", "rbdr~
$ T_NAME_M3  <chr> "<U+1019><U+102D><U+102F><U+1038><U+1019><U+102D><U+1010><U+103A>", "<U+1015><U+1004><U+103A><U+1038><U+1010><U+101A>", "<U+101B><U+103D><U+102C><U+1004><U+1036>", "<U+1015><U+1004><U+103A><U+101C><U+1031><U+102C><U+1004><U+103A><U+1038>", "<U+1019><U+1018><U+102D><U+1019><U+103A><U+1038>", "<U+1000><U+101C><U+1031><U+102C>"~
$ AREA       <dbl> 2703.611, 629.025, 2984.377, 3396.963, 5034.413, ~
$ geometry   <MULTIPOLYGON [°]> MULTIPOLYGON (((96.96001 23..., MULT~

4.2 Importing aspatial data into R environment

ict <- read_csv ("data/aspatial/Shan-ICT.csv")
summary(ict)
 District Pcode     District Name      Township Pcode    
 Length:55          Length:55          Length:55         
 Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character  
                                                         
                                                         
                                                         
 Township Name      Total households     Radio         Television   
 Length:55          Min.   : 3318    Min.   :  115   Min.   :  728  
 Class :character   1st Qu.: 8711    1st Qu.: 1260   1st Qu.: 3744  
 Mode  :character   Median :13685    Median : 2497   Median : 6117  
                    Mean   :18369    Mean   : 4487   Mean   :10183  
                    3rd Qu.:23471    3rd Qu.: 6192   3rd Qu.:13906  
                    Max.   :82604    Max.   :30176   Max.   :62388  
 Land line phone   Mobile phone      Computer      Internet at home
 Min.   :  20.0   Min.   :  150   Min.   :  20.0   Min.   :   8.0  
 1st Qu.: 266.5   1st Qu.: 2037   1st Qu.: 121.0   1st Qu.:  88.0  
 Median : 695.0   Median : 3559   Median : 244.0   Median : 316.0  
 Mean   : 929.9   Mean   : 6470   Mean   : 575.5   Mean   : 760.2  
 3rd Qu.:1082.5   3rd Qu.: 7177   3rd Qu.: 507.0   3rd Qu.: 630.5  
 Max.   :6736.0   Max.   :48461   Max.   :6705.0   Max.   :9746.0  

4.3 Derive new variables using dplyr package

ict_derived <- ict %>%
  mutate(`RADIO_PR` = `Radio`/`Total households`*1000) %>%
  mutate(`TV_PR` = `Television`/`Total households`*1000) %>%
  mutate(`LLPHONE_PR` = `Land line phone`/`Total households`*1000) %>%
  mutate(`MPHONE_PR` = `Mobile phone`/`Total households`*1000) %>%
  mutate(`COMPUTER_PR` = `Computer`/`Total households`*1000) %>%
  mutate(`INTERNET_PR` = `Internet at home`/`Total households`*1000) %>%
  rename(`DT_PCODE` =`District Pcode`,`DT`=`District Name`,
         `TS_PCODE`=`Township Pcode`, `TS`=`Township Name`,
         `TT_HOUSEHOLDS`=`Total households`,
         `RADIO`=`Radio`, `TV`=`Television`, 
         `LLPHONE`=`Land line phone`, `MPHONE`=`Mobile phone`,
         `COMPUTER`=`Computer`, `INTERNET`=`Internet at home`) 
summary(ict_derived)
   DT_PCODE              DT              TS_PCODE        
 Length:55          Length:55          Length:55         
 Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character  
                                                         
                                                         
                                                         
      TS            TT_HOUSEHOLDS       RADIO             TV       
 Length:55          Min.   : 3318   Min.   :  115   Min.   :  728  
 Class :character   1st Qu.: 8711   1st Qu.: 1260   1st Qu.: 3744  
 Mode  :character   Median :13685   Median : 2497   Median : 6117  
                    Mean   :18369   Mean   : 4487   Mean   :10183  
                    3rd Qu.:23471   3rd Qu.: 6192   3rd Qu.:13906  
                    Max.   :82604   Max.   :30176   Max.   :62388  
    LLPHONE           MPHONE         COMPUTER         INTERNET     
 Min.   :  20.0   Min.   :  150   Min.   :  20.0   Min.   :   8.0  
 1st Qu.: 266.5   1st Qu.: 2037   1st Qu.: 121.0   1st Qu.:  88.0  
 Median : 695.0   Median : 3559   Median : 244.0   Median : 316.0  
 Mean   : 929.9   Mean   : 6470   Mean   : 575.5   Mean   : 760.2  
 3rd Qu.:1082.5   3rd Qu.: 7177   3rd Qu.: 507.0   3rd Qu.: 630.5  
 Max.   :6736.0   Max.   :48461   Max.   :6705.0   Max.   :9746.0  
    RADIO_PR          TV_PR         LLPHONE_PR       MPHONE_PR     
 Min.   : 21.05   Min.   :116.0   Min.   :  2.78   Min.   : 36.42  
 1st Qu.:138.95   1st Qu.:450.2   1st Qu.: 22.84   1st Qu.:190.14  
 Median :210.95   Median :517.2   Median : 37.59   Median :305.27  
 Mean   :215.68   Mean   :509.5   Mean   : 51.09   Mean   :314.05  
 3rd Qu.:268.07   3rd Qu.:606.4   3rd Qu.: 69.72   3rd Qu.:428.43  
 Max.   :484.52   Max.   :842.5   Max.   :181.49   Max.   :735.43  
  COMPUTER_PR      INTERNET_PR     
 Min.   : 3.278   Min.   :  1.041  
 1st Qu.:11.832   1st Qu.:  8.617  
 Median :18.970   Median : 22.829  
 Mean   :24.393   Mean   : 30.644  
 3rd Qu.:29.897   3rd Qu.: 41.281  
 Max.   :92.402   Max.   :117.985  

5. Exploratory Data Analysis (EDA)

5.1 EDA using statistical graphics

5.1.1 Histograms

ggplot(data=ict_derived, aes(x=`RADIO`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

5.1.2 Boxplot

ggplot(data=ict_derived, aes(x=`RADIO`)) +
  geom_boxplot(color="black", fill="light blue")

My notes: We can see that both the histogram and boxplot above have a right skew.

5.1.3 Histograms of newly derived variables

ggplot(data=ict_derived, aes(x=`RADIO_PR`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

5.1.4 Boxplot of newly derived variables

ggplot(data=ict_derived, aes(x=`RADIO_PR`)) +
  geom_boxplot(color="black", fill="light blue")

*What can you observe from the distributions reveal in the histogram and boxplot? My notes: The penetration rate of radio is more normally distributed compared to the no. of households owning radio.

5.1.4 Multiple Histograms of selected variables

radio <- ggplot(data=ict_derived, 
             aes(x= `RADIO_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue")
tv <- ggplot(data=ict_derived, 
             aes(x= `TV_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue")
llphone <- ggplot(data=ict_derived, 
             aes(x= `LLPHONE_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue")
mphone <- ggplot(data=ict_derived, 
             aes(x= `MPHONE_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue")
computer <- ggplot(data=ict_derived, 
             aes(x= `COMPUTER_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue")
internet <- ggplot(data=ict_derived, 
             aes(x= `INTERNET_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue")
ggarrange(radio, tv, llphone, mphone, computer, internet, 
          ncol = 3, 
          nrow = 2)

My notes:

5.2 EDA using choropleth map

5.2.1 Joining geospatial data with aspatial data

shan_sf <- left_join(shan_sf, ict_derived, by=c("TS_PCODE"="TS_PCODE"))

5.2.2 Preparing a choropleth map

qtm(shan_sf, "RADIO_PR")

5.2.3 Reveal distribution (bias)

TT_HOUSEHOLDS.map <- tm_shape(shan_sf) + 
  tm_fill(col = "TT_HOUSEHOLDS",
          n = 5,
          style = "jenks", 
          title = "Total households") + 
  tm_borders(alpha = 0.5) 
RADIO.map <- tm_shape(shan_sf) + 
  tm_fill(col = "RADIO",
          n = 5,
          style = "jenks",
          title = "Number Radio ") + 
  tm_borders(alpha = 0.5) 
tmap_arrange(TT_HOUSEHOLDS.map, RADIO.map,
             asp=NA, ncol=2)

Results above show that:

5.2.4 Distribution of total number of households and Radio penetration rate

tm_shape(shan_sf) +
    tm_polygons(c("TT_HOUSEHOLDS", "RADIO_PR"),
                style="jenks") +
    tm_facets(sync = TRUE, ncol = 2) +
  tm_legend(legend.position = c("right", "bottom"))+
  tm_layout(outer.margins=0, asp=0)

*Can you identify the differences?

5.3 Correlation Analysis

Before we perform cluster analysis, it is important for us to ensure that the cluster variables are not highly correlated.

cluster_vars.cor = cor(ict_derived[,12:17])
corrplot.mixed(cluster_vars.cor,
         lower = "ellipse", 
               upper = "number",
               tl.pos = "lt",
               diag = "l",
               tl.col = "black")

Correlation plot above show that:

6. Hierarchy Cluster Analysis

6.1 Prepare variables

6.1.1 Extracting clustering variables

cluster_vars <- shan_sf %>%
  st_set_geometry(NULL) %>%
  select("TS.x", "RADIO_PR", "TV_PR", "LLPHONE_PR", "MPHONE_PR", "COMPUTER_PR")
head(cluster_vars,10)
        TS.x RADIO_PR    TV_PR LLPHONE_PR MPHONE_PR COMPUTER_PR
1    Mongmit 286.1852 554.1313   35.30618  260.6944    12.15939
2    Pindaya 417.4647 505.1300   19.83584  162.3917    12.88190
3    Ywangan 484.5215 260.5734   11.93591  120.2856     4.41465
4   Pinlaung 231.6499 541.7189   28.54454  249.4903    13.76255
5     Mabein 449.4903 708.6423   72.75255  392.6089    16.45042
6      Kalaw 280.7624 611.6204   42.06478  408.7951    29.63160
7      Pekon 318.6118 535.8494   39.83270  214.8476    18.97032
8   Lawksawk 387.1017 630.0035   31.51366  320.5686    21.76677
9  Nawnghkio 349.3359 547.9456   38.44960  323.0201    15.76465
10   Kyaukme 210.9548 601.1773   39.58267  372.4930    30.94709

6.1.2 Change row names

row.names(cluster_vars) <- cluster_vars$"TS.x"
head(cluster_vars,10)
               TS.x RADIO_PR    TV_PR LLPHONE_PR MPHONE_PR
Mongmit     Mongmit 286.1852 554.1313   35.30618  260.6944
Pindaya     Pindaya 417.4647 505.1300   19.83584  162.3917
Ywangan     Ywangan 484.5215 260.5734   11.93591  120.2856
Pinlaung   Pinlaung 231.6499 541.7189   28.54454  249.4903
Mabein       Mabein 449.4903 708.6423   72.75255  392.6089
Kalaw         Kalaw 280.7624 611.6204   42.06478  408.7951
Pekon         Pekon 318.6118 535.8494   39.83270  214.8476
Lawksawk   Lawksawk 387.1017 630.0035   31.51366  320.5686
Nawnghkio Nawnghkio 349.3359 547.9456   38.44960  323.0201
Kyaukme     Kyaukme 210.9548 601.1773   39.58267  372.4930
          COMPUTER_PR
Mongmit      12.15939
Pindaya      12.88190
Ywangan       4.41465
Pinlaung     13.76255
Mabein       16.45042
Kalaw        29.63160
Pekon        18.97032
Lawksawk     21.76677
Nawnghkio    15.76465
Kyaukme      30.94709

6.1.3 Delete TS.x field

shan_ict <- select(cluster_vars, c(2:6))
head(shan_ict, 10)
          RADIO_PR    TV_PR LLPHONE_PR MPHONE_PR COMPUTER_PR
Mongmit   286.1852 554.1313   35.30618  260.6944    12.15939
Pindaya   417.4647 505.1300   19.83584  162.3917    12.88190
Ywangan   484.5215 260.5734   11.93591  120.2856     4.41465
Pinlaung  231.6499 541.7189   28.54454  249.4903    13.76255
Mabein    449.4903 708.6423   72.75255  392.6089    16.45042
Kalaw     280.7624 611.6204   42.06478  408.7951    29.63160
Pekon     318.6118 535.8494   39.83270  214.8476    18.97032
Lawksawk  387.1017 630.0035   31.51366  320.5686    21.76677
Nawnghkio 349.3359 547.9456   38.44960  323.0201    15.76465
Kyaukme   210.9548 601.1773   39.58267  372.4930    30.94709

6.2 Data Standardisation

In general, multiple variables will be used in cluster analysis. It is not unusual their values range are different. In order to avoid cluster analysis result to be biased due to the clustering variables with large values, it is useful to standardise the input variables before performing cluster analysis.

6.2.1 Min-Max standardisation

In the code chunk below we use:

shan_ict.std <- normalize(shan_ict)
summary(shan_ict.std)
    RADIO_PR          TV_PR          LLPHONE_PR       MPHONE_PR     
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.2544   1st Qu.:0.4600   1st Qu.:0.1123   1st Qu.:0.2199  
 Median :0.4097   Median :0.5523   Median :0.1948   Median :0.3846  
 Mean   :0.4199   Mean   :0.5416   Mean   :0.2703   Mean   :0.3972  
 3rd Qu.:0.5330   3rd Qu.:0.6750   3rd Qu.:0.3746   3rd Qu.:0.5608  
 Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
  COMPUTER_PR     
 Min.   :0.00000  
 1st Qu.:0.09598  
 Median :0.17607  
 Mean   :0.23692  
 3rd Qu.:0.29868  
 Max.   :1.00000  

Results above show that:

6.2.2 Z-score standardisation

In the code chunk below we use:

Warning: Z-score standardisation method should only be used if we would assume all variables come from some normal distribution.

shan_ict.z <- scale(shan_ict)
describe(shan_ict.z)
            vars  n mean sd median trimmed  mad   min  max range
RADIO_PR       1 55    0  1  -0.04   -0.06 0.94 -1.85 2.55  4.40
TV_PR          2 55    0  1   0.05    0.04 0.78 -2.47 2.09  4.56
LLPHONE_PR     3 55    0  1  -0.33   -0.15 0.68 -1.19 3.20  4.39
MPHONE_PR      4 55    0  1  -0.05   -0.06 1.01 -1.58 2.40  3.98
COMPUTER_PR    5 55    0  1  -0.26   -0.18 0.64 -1.03 3.31  4.34
             skew kurtosis   se
RADIO_PR     0.48    -0.27 0.13
TV_PR       -0.38    -0.23 0.13
LLPHONE_PR   1.37     1.49 0.13
MPHONE_PR    0.48    -0.34 0.13
COMPUTER_PR  1.80     2.96 0.13

Results above show that:

6.2.3 Visualising the standardised clustering variables

r <- ggplot(data=ict_derived, 
             aes(x= `RADIO_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue")
shan_ict_s_df <- as.data.frame(shan_ict.std)
s <- ggplot(data=shan_ict_s_df, 
       aes(x=`RADIO_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue") +
  ggtitle("Min-Max Standardisation")
shan_ict_z_df <- as.data.frame(shan_ict.z)
z <- ggplot(data=shan_ict_z_df, 
       aes(x=`RADIO_PR`)) +
  geom_histogram(bins=20, 
                 color="black", 
                 fill="light blue") +
  ggtitle("Z-score Standardisation")
ggarrange(r, s, z,
          ncol = 3,
          nrow = 1)

6.3 Computing proximity matrix

proxmat <- dist(shan_ict, method = 'euclidean')
proxmat
             Mongmit   Pindaya   Ywangan  Pinlaung    Mabein
Pindaya    171.86828                                        
Ywangan    381.88259 257.31610                              
Pinlaung    57.46286 208.63519 400.05492                    
Mabein     263.37099 313.45776 529.14689 312.66966          
Kalaw      160.05997 302.51785 499.53297 181.96406 198.14085
Pekon       59.61977 117.91580 336.50410  94.61225 282.26877
Lawksawk   140.11550 204.32952 432.16535 192.57320 130.36525
Nawnghkio   89.07103 180.64047 377.87702 139.27495 204.63154
Kyaukme    144.02475 311.01487 505.89191 139.67966 264.88283
Muse       563.01629 704.11252 899.44137 571.58335 453.27410
Laihka     141.87227 298.61288 491.83321 101.10150 345.00222
Mongnai    115.86190 258.49346 422.71934  64.52387 358.86053
Mawkmai    434.92968 437.99577 397.03752 398.11227 693.24602
Kutkai      97.61092 212.81775 360.11861  78.07733 340.55064
Mongton    192.67961 283.35574 361.23257 163.42143 425.16902
Mongyai    256.72744 287.41816 333.12853 220.56339 516.40426
Mongkaing  503.61965 481.71125 364.98429 476.29056 747.17454
Lashio     251.29457 398.98167 602.17475 262.51735 231.28227
Mongpan    193.32063 335.72896 483.68125 192.78316 301.52942
Matman     401.25041 354.39039 255.22031 382.40610 637.53975
Tachileik  529.63213 635.51774 807.44220 555.01039 365.32538
Narphan    406.15714 474.50209 452.95769 371.26895 630.34312
Mongkhet   349.45980 391.74783 408.97731 305.86058 610.30557
Hsipaw     118.18050 245.98884 388.63147  76.55260 366.42787
Monghsat   214.20854 314.71506 432.98028 160.44703 470.48135
Mongmao    242.54541 402.21719 542.85957 217.58854 384.91867
Nansang    104.91839 275.44246 472.77637  85.49572 287.92364
Laukkaing  568.27732 726.85355 908.82520 563.81750 520.67373
Pangsang   272.67383 428.24958 556.82263 244.47146 418.54016
Namtu      179.62251 225.40822 444.66868 170.04533 366.16094
Monghpyak  177.76325 221.30579 367.44835 222.20020 212.69450
Konkyan    403.39082 500.86933 528.12533 365.44693 613.51206
Mongping   265.12574 310.64850 337.94020 229.75261 518.16310
Hopong     136.93111 223.06050 352.85844  98.14855 398.00917
Nyaungshwe  99.38590 216.52463 407.11649 138.12050 210.21337
Hsihseng   131.49728 172.00796 342.91035 111.61846 381.20187
Mongla     384.30076 549.42389 728.16301 372.59678 406.09124
Hseni      189.37188 337.98982 534.44679 204.47572 213.61240
Kunlong    224.12169 355.47066 531.63089 194.76257 396.61508
Hopang     281.05362 443.26362 596.19312 265.96924 368.55167
Namhkan    386.02794 543.81859 714.43173 382.78835 379.56035
Kengtung   246.45691 385.68322 573.23173 263.48638 219.47071
Langkho    164.26299 323.28133 507.78892 168.44228 253.84371
Monghsu    109.15790 198.35391 340.42789  80.86834 367.19820
Taunggyi   399.84278 503.75471 697.98323 429.54386 226.24011
Pangwaun   381.51246 512.13162 580.13146 356.37963 523.44632
Kyethi     202.92551 175.54012 287.29358 189.47065 442.07679
Loilen     145.48666 293.61143 469.51621  91.56527 375.06406
Manton     430.64070 402.42888 306.16379 405.83081 674.01120
Mongyang   309.51302 475.93982 630.71590 286.03834 411.88352
Kunhing    173.50424 318.23811 449.67218 141.58836 375.82140
Mongyawng  214.21738 332.92193 570.56521 235.55497 193.49994
Tangyan    195.92520 208.43740 324.77002 169.50567 448.59948
Namhsan    237.78494 228.41073 286.16305 214.33352 488.33873
               Kalaw     Pekon  Lawksawk Nawnghkio   Kyaukme
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon      211.91531                                        
Lawksawk   140.01101 157.51129                              
Nawnghkio  127.74787 113.15370  90.82891                    
Kyaukme     79.42225 202.12206 186.29066 157.04230          
Muse       412.46033 614.56144 510.13288 533.68806 434.75768
Laihka     197.34633 182.23667 246.74469 211.88187 128.24979
Mongnai    200.34668 151.60031 241.71260 182.21245 142.45669
Mawkmai    562.59200 416.00669 567.52693 495.15047 512.02846
Kutkai     204.93018 114.98048 224.64646 147.44053 170.93318
Mongton    267.87522 208.14888 311.07742 225.81118 229.28509
Mongyai    386.74701 242.52301 391.26989 319.57938 339.27780
Mongkaing  625.24500 480.23965 625.18712 546.69447 586.05094
Lashio     106.69059 303.80011 220.75270 230.55346 129.95255
Mongpan    114.69105 243.30037 228.54223 172.84425 110.37831
Matman     537.63884 368.25761 515.39711 444.05061 505.52285
Tachileik  373.64459 573.39528 441.82621 470.45533 429.15493
Narphan    463.53759 416.84901 523.69580 435.59661 420.30003
Mongkhet   465.52013 342.08722 487.41102 414.10280 409.03553
Hsipaw     212.36711 145.37542 249.35081 176.09570 163.95741
Monghsat   317.96188 225.64279 352.31496 289.83220 253.25370
Mongmao    195.18913 293.70625 314.64777 257.76465 146.09228
Nansang    124.30500 160.37607 188.78869 151.13185  60.32773
Laukkaing  427.77791 624.82399 548.83928 552.65554 428.74978
Pangsang   224.03998 321.81214 345.91486 287.10769 175.35273
Namtu      307.27427 165.02707 260.95300 257.52713 270.87277
Monghpyak  167.08436 190.93173 142.31691  93.03711 217.64419
Konkyan    444.75859 421.48797 520.31264 439.34272 393.79911
Mongping   375.64739 259.68288 396.47081 316.14719 330.28984
Hopong     264.16294 138.86577 274.91604 204.88286 218.84211
Nyaungshwe  95.66782 139.31874 104.17830  43.26545 126.50414
Hsihseng   287.11074 105.30573 257.11202 209.88026 250.27059
Mongla     260.26411 441.20998 393.18472 381.40808 241.58966
Hseni       38.52842 243.98001 171.50398 164.05304  81.20593
Kunlong    273.01375 249.36301 318.30406 285.04608 215.63037
Hopang     185.14704 336.38582 321.16462 279.84188 154.91633
Namhkan    246.39577 442.77120 379.41126 367.33575 247.81990
Kengtung    88.29335 297.67761 209.38215 208.29647 136.23356
Langkho     67.19580 219.21623 190.30257 156.51662  51.67279
Monghsu    237.34578 113.84636 242.04063 170.09168 200.77712
Taunggyi   252.26066 440.66133 304.96838 344.79200 312.60547
Pangwaun   338.35194 423.81347 453.02765 381.67478 308.31407
Kyethi     360.17247 162.43575 317.74604 267.21607 328.14177
Loilen     217.19877 181.94596 265.29318 219.26405 146.92675
Manton     560.16577 403.82131 551.13000 475.77296 522.86003
Mongyang   233.56349 363.58788 363.37684 323.32123 188.59489
Kunhing    197.63683 213.46379 278.68953 206.15773 145.00266
Mongyawng  173.43078 248.43910 179.07229 220.61209 181.55295
Tangyan    348.06617 167.79937 323.14701 269.07880 306.78359
Namhsan    385.88676 207.16559 362.84062 299.74967 347.85944
                Muse    Laihka   Mongnai   Mawkmai    Kutkai
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon                                                       
Lawksawk                                                    
Nawnghkio                                                   
Kyaukme                                                     
Muse                                                        
Laihka     526.65211                                        
Mongnai    571.97975 100.53457                              
Mawkmai    926.93007 429.96554 374.50873                    
Kutkai     592.90743 144.67198  91.15307 364.95519          
Mongton    634.71074 212.07320 131.67061 313.35220 107.06341
Mongyai    763.91399 264.13364 203.23607 178.70499 188.94166
Mongkaing  995.66496 522.96309 456.00842 133.29995 428.96133
Lashio     313.15288 238.64533 270.86983 638.60773 289.82513
Mongpan    447.49969 210.76951 178.09554 509.99632 185.18173
Matman     929.11283 443.25453 376.33870 147.83545 340.86349
Tachileik  221.19950 549.08985 563.95232 919.38755 568.99109
Narphan    770.40234 392.32592 329.31700 273.75350 314.27683
Mongkhet   816.44931 324.97428 275.76855 115.58388 273.91673
Hsipaw     591.03355 128.42987  52.68195 351.34601  51.46282
Monghsat   663.76026 158.93517 125.25968 275.09705 154.32012
Mongmao    451.82530 185.99082 188.29603 485.52853 204.69232
Nansang    489.35308  78.78999  92.79567 462.41938 130.04549
Laukkaing  149.26996 507.39700 551.56800 882.51110 580.38112
Pangsang   460.24292 214.19291 204.25746 484.14757 228.33583
Namtu      659.16927 185.86794 209.35473 427.95451 225.28268
Monghpyak  539.43485 293.22640 253.26470 536.71695 206.61627
Konkyan    704.86973 351.75354 328.82831 339.01411 310.60810
Mongping   744.44948 272.82761 202.99615 194.31049 182.75266
Hopong     648.68011 157.48857  91.53795 302.84362  73.45899
Nyaungshwe 505.88581 201.71653 169.63695 502.99026 152.15482
Hsihseng   677.66886 175.89761 142.36728 329.29477 128.21054
Mongla     256.80556 315.93218 354.10985 686.88950 388.40984
Hseni      381.30567 204.49010 216.81639 582.53670 229.37894
Kunlong    547.24297 122.68682 202.92529 446.53763 204.54010
Hopang     377.44407 230.78652 243.00945 561.24281 263.31986
Namhkan    238.67060 342.43665 370.05669 706.47792 392.48568
Kengtung   330.08211 258.23950 272.28711 632.54638 279.19573
Langkho    413.64173 160.94435 174.67678 531.08019 180.51419
Monghsu    633.21624 163.28926  84.11238 332.07962  62.60859
Taunggyi   250.81471 425.36916 448.55282 810.74692 450.33382
Pangwaun   541.97887 351.78203 312.13429 500.68857 321.80465
Kyethi     757.16745 255.83275 210.50453 278.85535 184.23422
Loilen     560.43400  59.69478  58.41263 388.73386 131.56529
Manton     941.49778 458.30232 391.54062 109.08779 361.82684
Mongyang   389.59919 229.71502 260.39387 558.83162 285.33223
Kunhing    533.00162 142.03682 110.55197 398.43973 108.84990
Mongyawng  422.37358 211.99976 275.77546 620.04321 281.03383
Tangyan    736.93741 224.29176 180.37471 262.66006 166.61820
Namhsan    778.52971 273.79672 218.10003 215.19289 191.32762
             Mongton   Mongyai Mongkaing    Lashio   Mongpan
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon                                                       
Lawksawk                                                    
Nawnghkio                                                   
Kyaukme                                                     
Muse                                                        
Laihka                                                      
Mongnai                                                     
Mawkmai                                                     
Kutkai                                                      
Mongton                                                     
Mongyai    159.79790                                        
Mongkaing  365.50032 262.84016                              
Lashio     347.11584 466.36472 708.65819                    
Mongpan    200.31803 346.39710 563.56780 172.33279          
Matman     303.04574 186.95158 135.51424 628.11049 494.81014
Tachileik  608.76740 750.29555 967.14087 311.95286 411.03849
Narphan    215.97925 248.82845 285.65085 525.63854 371.13393
Mongkhet   223.22828 104.98924 222.60577 534.44463 412.17123
Hsipaw      90.69766 177.33790 423.77868 290.86435 179.52054
Monghsat   150.98053 127.35225 375.60376 377.86793 283.30992
Mongmao    206.57001 335.61300 552.31959 214.23677 131.59966
Nansang    199.58124 288.55962 542.16609 184.47950 144.77393
Laukkaing  604.66190 732.68347 954.11795 334.65738 435.58047
Pangsang   210.77938 343.30638 548.40662 236.72516 140.23910
Namtu      308.71751 278.02761 525.04057 365.88437 352.91394
Monghpyak  258.04282 370.01575 568.21089 262.09281 187.85699
Konkyan    248.25265 287.87384 380.92091 485.51312 365.87588
Mongping   119.86993  65.38727 257.18572 454.52548 318.47482
Hopong     106.21031 124.62791 379.37916 345.31042 239.43845
Nyaungshwe 219.72196 327.13541 557.32112 201.58191 137.29734
Hsihseng   194.64317 162.27126 411.59788 369.00833 295.87811
Mongla     411.06668 535.28615 761.48327 179.95877 253.20001
Hseni      286.75945 408.23212 648.04408  79.41836 120.66550
Kunlong    270.02165 299.36066 539.91284 295.23103 288.03320
Hopang     273.50305 408.73288 626.17673 170.63913 135.62913
Namhkan    414.53594 550.62819 771.39688 173.27153 240.34131
Kengtung   329.38387 460.39706 692.74693  59.85893 142.21554
Langkho    236.70878 358.95672 597.42714 115.18145  94.98486
Monghsu    107.04894 154.86049 400.71816 325.71557 216.25326
Taunggyi   508.40925 635.94105 866.21117 195.14541 319.81385
Pangwaun   257.50434 394.07696 536.95736 362.45608 232.52209
Kyethi     222.52947 137.79420 352.06533 447.10266 358.89620
Loilen     176.16001 224.79239 482.18190 268.92310 207.25000
Manton     310.20581 195.59882  81.75337 646.66493 507.96808
Mongyang   295.60023 414.31237 631.91325 209.33700 194.93467
Kunhing    114.03609 238.99570 465.03971 255.10832 137.85278
Mongyawng  375.22688 445.78964 700.98284 172.70139 275.15989
Tangyan    198.88460 109.08506 348.56123 429.84475 340.39128
Namhsan    196.76188  77.35900 288.66231 472.04024 364.77086
              Matman Tachileik   Narphan  Mongkhet    Hsipaw
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon                                                       
Lawksawk                                                    
Nawnghkio                                                   
Kyaukme                                                     
Muse                                                        
Laihka                                                      
Mongnai                                                     
Mawkmai                                                     
Kutkai                                                      
Mongton                                                     
Mongyai                                                     
Mongkaing                                                   
Lashio                                                      
Mongpan                                                     
Matman                                                      
Tachileik  890.12935                                        
Narphan    312.05193 760.29566                              
Mongkhet   203.02855 820.50164 217.28718                    
Hsipaw     344.45451 576.18780 295.40170 253.80950          
Monghsat   313.59911 677.09508 278.21548 167.98445 121.78922
Mongmao    501.59903 472.95568 331.42618 375.35820 185.99483
Nansang    458.06573 486.77266 398.13308 360.99219 120.24428
Laukkaing  903.72094 325.06329 708.82887 769.06406 569.06099
Pangsang   506.29940 481.31907 316.30314 375.58139 205.04337
Namtu      416.65397 659.56458 494.36143 355.99713 229.44658
Monghpyak  470.46845 444.04411 448.40651 462.63265 237.67919
Konkyan    392.40306 730.92980 158.82353 254.24424 296.74316
Mongping   201.65224 727.08969 188.64567 113.80917 168.92101
Hopong     291.84351 632.45718 294.40441 212.99485  62.86179
Nyaungshwe 460.91883 445.81335 427.94086 417.08639 169.92664
Hsihseng   304.02806 658.87060 377.52977 256.70338 136.54610
Mongla     708.17595 347.33155 531.46949 574.40292 373.47509
Hseni      564.64051 354.90063 474.12297 481.88406 231.48538
Kunlong    468.27436 595.70536 413.07823 341.68641 205.10051
Hopang     573.55355 403.82035 397.85908 451.51070 248.72536
Namhkan    715.42102 295.91660 536.85519 596.19944 382.79302
Kengtung   613.01033 295.90429 505.40025 531.35998 284.08582
Langkho    518.86151 402.33622 420.65204 428.08061 183.05109
Monghsu    308.13805 605.02113 311.92379 247.73318  58.55724
Taunggyi   778.45810 150.84117 684.20905 712.80752 462.31183
Pangwaun   523.43600 540.60474 264.64997 407.02947 298.12447
Kyethi     233.83079 728.87329 374.90376 233.25039 195.17677
Loilen     406.56282 573.75476 354.79137 284.76895  98.04789
Manton      59.52318 910.23039 280.26395 181.33894 359.60008
Mongyang   585.61776 448.79027 401.39475 445.40621 267.10497
Kunhing    403.66587 532.26397 281.62645 292.49814  90.77517
Mongyawng  601.80824 432.10118 572.76394 522.91815 294.70967
Tangyan    242.78233 719.84066 348.84991 201.49393 167.69794
Namhsan    180.09747 754.03913 316.54695 170.90848 194.47928
            Monghsat   Mongmao   Nansang Laukkaing  Pangsang
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon                                                       
Lawksawk                                                    
Nawnghkio                                                   
Kyaukme                                                     
Muse                                                        
Laihka                                                      
Mongnai                                                     
Mawkmai                                                     
Kutkai                                                      
Mongton                                                     
Mongyai                                                     
Mongkaing                                                   
Lashio                                                      
Mongpan                                                     
Matman                                                      
Tachileik                                                   
Narphan                                                     
Mongkhet                                                    
Hsipaw                                                      
Monghsat                                                    
Mongmao    247.17708                                        
Nansang    201.92690 164.99494                              
Laukkaing  626.44910 404.00848 480.60074                    
Pangsang   256.37933  57.60801 193.36162 408.04016          
Namtu      231.78673 365.03882 217.61884 664.06286 392.97391
Monghpyak  356.84917 291.88846 227.52638 565.84279 315.11651
Konkyan    268.25060 281.87425 374.70456 635.92043 274.81900
Mongping   140.95392 305.57166 287.36626 708.13447 308.33123
Hopong     100.45714 244.16253 167.66291 628.48557 261.51075
Nyaungshwe 286.37238 230.45003 131.18943 520.24345 257.77823
Hsihseng   153.49551 311.98001 193.53779 670.74564 335.52974
Mongla     429.00536 216.24705 289.45119 202.55831 217.88123
Hseni      331.22632 184.67099 136.45492 391.74585 214.66375
Kunlong    202.31862 224.43391 183.01388 521.88657 258.49342
Hopang     317.64824  78.29342 196.47091 331.67199  92.57672
Namhkan    455.10875 223.32205 302.89487 196.46063 231.38484
Kengtung   383.72138 207.58055 193.67980 351.48520 229.85484
Langkho    279.52329 134.50170  99.39859 410.41270 167.65920
Monghsu    137.24737 242.43599 153.59962 619.01766 260.52971
Taunggyi   562.88102 387.33906 365.04897 345.98041 405.59730
Pangwaun   343.53898 187.40057 326.12960 470.63605 157.48757
Kyethi     190.50609 377.89657 273.02385 749.99415 396.89963
Loilen     118.65144 190.26490  94.23028 535.57527 207.94433
Manton     317.15603 503.79786 476.55544 907.38406 504.75214
Mongyang   312.64797  91.06281 218.49285 326.19219 108.37735
Kunhing    165.38834 103.91040 128.20940 500.41640 123.18870
Mongyawng  364.40429 296.40789 191.11990 454.80044 336.16703
Tangyan    144.59626 347.14183 249.70235 722.40954 364.76893
Namhsan    169.56962 371.71448 294.16284 760.45960 385.65526
               Namtu Monghpyak   Konkyan  Mongping    Hopong
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon                                                       
Lawksawk                                                    
Nawnghkio                                                   
Kyaukme                                                     
Muse                                                        
Laihka                                                      
Mongnai                                                     
Mawkmai                                                     
Kutkai                                                      
Mongton                                                     
Mongyai                                                     
Mongkaing                                                   
Lashio                                                      
Mongpan                                                     
Matman                                                      
Tachileik                                                   
Narphan                                                     
Mongkhet                                                    
Hsipaw                                                      
Monghsat                                                    
Mongmao                                                     
Nansang                                                     
Laukkaing                                                   
Pangsang                                                    
Namtu                                                       
Monghpyak  346.57799                                        
Konkyan    478.37690 463.39594                              
Mongping   321.66441 354.76537 242.02901                    
Hopong     206.82668 267.95563 304.49287 134.00139          
Nyaungshwe 271.41464 103.97300 432.35040 319.32583 209.32532
Hsihseng   131.89940 285.37627 383.49700 199.64389  91.65458
Mongla     483.49434 408.03397 468.09747 512.61580 432.31105
Hseni      327.41448 200.26876 448.84563 395.58453 286.41193
Kunlong    233.60474 357.44661 329.11433 309.05385 219.06817
Hopang     408.24516 304.26577 348.18522 379.27212 309.77356
Namhkan    506.32466 379.50202 481.59596 523.74815 444.13246
Kengtung   385.33554 221.47613 474.82621 442.80821 340.47382
Langkho    305.03473 200.27496 386.95022 343.96455 239.63685
Monghsu    209.64684 232.17823 331.72187 158.90478  43.40665
Taunggyi   518.72748 334.17439 650.56905 621.53039 513.76415
Pangwaun   517.03554 381.95144 263.97576 340.37881 346.00673
Kyethi     186.90932 328.16234 400.10989 187.43974 136.49038
Loilen     194.24075 296.99681 334.19820 231.99959 124.74445
Manton     448.58230 502.20840 366.66876 200.48082 310.58885
Mongyang   413.26052 358.17599 329.39338 387.80686 323.35704
Kunhing    296.43996 250.74435 253.74202 212.59619 145.15617
Mongyawng  262.24331 285.56475 522.38580 455.59190 326.59925
Tangyan    178.69483 335.26416 367.46064 161.67411 106.82328
Namhsan    240.95555 352.70492 352.20115 130.23777 132.70541
           Nyaungshwe  Hsihseng    Mongla     Hseni   Kunlong
Pindaya                                                      
Ywangan                                                      
Pinlaung                                                     
Mabein                                                       
Kalaw                                                        
Pekon                                                        
Lawksawk                                                     
Nawnghkio                                                    
Kyaukme                                                      
Muse                                                         
Laihka                                                       
Mongnai                                                      
Mawkmai                                                      
Kutkai                                                       
Mongton                                                      
Mongyai                                                      
Mongkaing                                                    
Lashio                                                       
Mongpan                                                      
Matman                                                       
Tachileik                                                    
Narphan                                                      
Mongkhet                                                     
Hsipaw                                                       
Monghsat                                                     
Mongmao                                                      
Nansang                                                      
Laukkaing                                                    
Pangsang                                                     
Namtu                                                        
Monghpyak                                                    
Konkyan                                                      
Mongping                                                     
Hopong                                                       
Nyaungshwe                                                   
Hsihseng    225.80242                                        
Mongla      347.60273 478.66210                              
Hseni       130.86310 312.74375 226.82048                    
Kunlong     285.13095 231.85967 346.46200 276.19175          
Hopang      247.19891 370.01334 147.02444 162.80878 271.34451
Namhkan     333.32428 492.09476  77.21355 212.11323 375.73885
Kengtung    177.75714 370.72441 202.45004  66.12817 317.14187
Langkho     128.26577 276.27441 229.01675  66.66133 224.52741
Monghsu     173.82799  97.82470 424.51868 262.28462 239.89665
Taunggyi    325.09619 528.14240 297.09863 238.19389 471.29032
Pangwaun    352.92324 433.06326 319.18643 330.70182 392.45403
Kyethi      288.06872  84.04049 556.02500 388.33498 298.55859
Loilen      206.40432 158.84853 338.67408 227.10984 166.53599
Manton      488.79874 334.87758 712.51416 584.63341 479.76855
Mongyang    294.29500 382.59743 146.66661 210.19929 247.22785
Kunhing     189.97131 220.15490 306.47566 206.47448 193.77551
Mongyawng   218.12104 309.51462 315.57550 173.86004 240.39800
Tangyan     284.14692  70.27241 526.80849 373.07575 268.07983
Namhsan     315.91750 125.74240 564.02740 411.96125 310.40560
              Hopang   Namhkan  Kengtung   Langkho   Monghsu
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon                                                       
Lawksawk                                                    
Nawnghkio                                                   
Kyaukme                                                     
Muse                                                        
Laihka                                                      
Mongnai                                                     
Mawkmai                                                     
Kutkai                                                      
Mongton                                                     
Mongyai                                                     
Mongkaing                                                   
Lashio                                                      
Mongpan                                                     
Matman                                                      
Tachileik                                                   
Narphan                                                     
Mongkhet                                                    
Hsipaw                                                      
Monghsat                                                    
Mongmao                                                     
Nansang                                                     
Laukkaing                                                   
Pangsang                                                    
Namtu                                                       
Monghpyak                                                   
Konkyan                                                     
Mongping                                                    
Hopong                                                      
Nyaungshwe                                                  
Hsihseng                                                    
Mongla                                                      
Hseni                                                       
Kunlong                                                     
Hopang                                                      
Namhkan    146.18632                                        
Kengtung   164.29921 175.63015                              
Langkho    134.24847 224.40029 107.16213                    
Monghsu    301.84458 431.32637 316.91914 221.84918          
Taunggyi   329.95252 257.29147 186.28225 288.27478 486.91951
Pangwaun   206.98364 310.44067 337.48335 295.38434 343.38498
Kyethi     440.48114 567.86202 444.26274 350.91512 146.61572
Loilen     242.89326 364.90647 282.22935 184.10672 131.55208
Manton     577.52046 721.86149 631.99123 535.95620 330.76503
Mongyang    69.25859 167.72448 217.08047 175.35413 323.95988
Kunhing    172.96164 314.92119 245.95083 146.38284 146.78891
Mongyawng  290.51360 321.21112 203.87199 186.11584 312.85089
Tangyan    412.22167 542.64078 429.95076 332.02048 127.42203
Namhsan    440.51555 576.42717 466.20497 368.20978 153.22576
            Taunggyi  Pangwaun    Kyethi    Loilen    Manton
Pindaya                                                     
Ywangan                                                     
Pinlaung                                                    
Mabein                                                      
Kalaw                                                       
Pekon                                                       
Lawksawk                                                    
Nawnghkio                                                   
Kyaukme                                                     
Muse                                                        
Laihka                                                      
Mongnai                                                     
Mawkmai                                                     
Kutkai                                                      
Mongton                                                     
Mongyai                                                     
Mongkaing                                                   
Lashio                                                      
Mongpan                                                     
Matman                                                      
Tachileik                                                   
Narphan                                                     
Mongkhet                                                    
Hsipaw                                                      
Monghsat                                                    
Mongmao                                                     
Nansang                                                     
Laukkaing                                                   
Pangsang                                                    
Namtu                                                       
Monghpyak                                                   
Konkyan                                                     
Mongping                                                    
Hopong                                                      
Nyaungshwe                                                  
Hsihseng                                                    
Mongla                                                      
Hseni                                                       
Kunlong                                                     
Hopang                                                      
Namhkan                                                     
Kengtung                                                    
Langkho                                                     
Monghsu                                                     
Taunggyi                                                    
Pangwaun   497.61245                                        
Kyethi     599.57407 476.62610                              
Loilen     455.91617 331.69981 232.32965                    
Manton     803.08034 510.79265 272.03299 419.06087          
Mongyang   374.58247 225.25026 453.86726 246.76592 585.70558
Kunhing    429.98509 229.09986 278.95182 130.39336 410.49230
Mongyawng  287.73864 475.33116 387.71518 261.75211 629.43339
Tangyan    592.65262 447.05580  47.79331 196.60826 271.82672
Namhsan    631.49232 448.58030  68.67929 242.15271 210.48485
            Mongyang   Kunhing Mongyawng   Tangyan
Pindaya                                           
Ywangan                                           
Pinlaung                                          
Mabein                                            
Kalaw                                             
Pekon                                             
Lawksawk                                          
Nawnghkio                                         
Kyaukme                                           
Muse                                              
Laihka                                            
Mongnai                                           
Mawkmai                                           
Kutkai                                            
Mongton                                           
Mongyai                                           
Mongkaing                                         
Lashio                                            
Mongpan                                           
Matman                                            
Tachileik                                         
Narphan                                           
Mongkhet                                          
Hsipaw                                            
Monghsat                                          
Mongmao                                           
Nansang                                           
Laukkaing                                         
Pangsang                                          
Namtu                                             
Monghpyak                                         
Konkyan                                           
Mongping                                          
Hopong                                            
Nyaungshwe                                        
Hsihseng                                          
Mongla                                            
Hseni                                             
Kunlong                                           
Hopang                                            
Namhkan                                           
Kengtung                                          
Langkho                                           
Monghsu                                           
Taunggyi                                          
Pangwaun                                          
Kyethi                                            
Loilen                                            
Manton                                            
Mongyang                                          
Kunhing    188.89405                              
Mongyawng  304.21734 295.35984                    
Tangyan    421.06366 249.74161 377.52279          
Namhsan    450.97869 270.79121 430.02019  63.67613

6.4 Hierarchical clustering

6.4.1 Compute hierarchical clustering

hclust_ward <- hclust(proxmat, method = 'ward.D')

6.4.2 Plot tree

plot(hclust_ward, cex = 0.6)

6.5 Select optimal clustering algorithm

One of the challenge in performing hierarchical clustering is to:

m <- c( "average", "single", "complete", "ward")
names(m) <- c( "average", "single", "complete", "ward")
ac <- function(x) {
  agnes(shan_ict, method = x)$ac
}
map_dbl(m, ac)
  average    single  complete      ward 
0.8131144 0.6628705 0.8950702 0.9427730 

Results above show that:

6.6 Determining Optimal Clusters

There are 3 commonly used methods to determine the optimal clusters, they are:

6.6.1 Gap Statistic Method

6.6.1.1 Compute gap statistic

set.seed(12345)
gap_stat <- clusGap(shan_ict, FUN = hcut, nstart = 25, K.max = 10, B = 50)
print(gap_stat, method = "firstmax") # print result
Clustering Gap statistic ["clusGap"] from call:
clusGap(x = shan_ict, FUNcluster = hcut, K.max = 10, B = 50,     nstart = 25)
B=50 simulated reference sets, k = 1..10; spaceH0="scaledPCA"
 --> Number of clusters (method 'firstmax'): 1
          logW   E.logW       gap     SE.sim
 [1,] 8.407129 8.680794 0.2736651 0.04460994
 [2,] 8.130029 8.350712 0.2206824 0.03880130
 [3,] 7.992265 8.202550 0.2102844 0.03362652
 [4,] 7.862224 8.080655 0.2184311 0.03784781
 [5,] 7.756461 7.978022 0.2215615 0.03897071
 [6,] 7.665594 7.887777 0.2221833 0.03973087
 [7,] 7.590919 7.806333 0.2154145 0.04054939
 [8,] 7.526680 7.731619 0.2049390 0.04198644
 [9,] 7.458024 7.660795 0.2027705 0.04421874
[10,] 7.377412 7.593858 0.2164465 0.04540947

6.6.1.2 Visualise plot

fviz_gap_stat(gap_stat)

Results above show that:

Note:

6.7 Interpreting the dendrograms

In the code chunk below, we use: - rect.hclust() of R stats to draw the dendrogram with a border around the selected clusters. - The argument border is used to specify the border colors for the rectangles.

plot(hclust_ward, cex = 0.6)
rect.hclust(hclust_ward, k = 6, border = 2:5)

6.8 Visually-driven hierarchical clustering analysis

With heatmaply package, we are able to build both highly interactive cluster heatmap or static cluster heatmap.

6.8.1 Transforming the data frame into a matrix

shan_ict_mat <- data.matrix(shan_ict)

6.8.2 Plotting interactive cluster heatmap using heatmaply()

heatmaply(normalize(shan_ict_mat),
          Colv=NA,
          dist_method = "euclidean",
          hclust_method = "ward.D",
          seriate = "OLO",
          colors = Blues,
          k_row = 6,
          margins = c(NA,200,60,NA),
          fontsize_row = 4,
          fontsize_col = 5,
          main="Geographic Segmentation of Shan State by ICT indicators",
          xlab = "ICT Indicators",
          ylab = "Townships of Shan State"
          )

6.9 Mapping the clusters formed

With close examination of the dendragram above, we have decided to retain 5 clusters.

6.9.1 Derive 5-cluster model

groups <- as.factor(cutree(hclust_ward, k=6))

6.9.2 Append groups

To visualise the clusters, the groups object need to be appended onto shan_sf simple feature object.

shan_sf_cluster <- cbind(shan_sf, as.matrix(groups)) %>%
  rename(`CLUSTER`=`as.matrix.groups.`)

6.9.3 Plot choropleth map

qtm(shan_sf_cluster, "CLUSTER")

Results above show that:

7. Spatially Constrained Clustering - SKATER approach

Here, we will derive spatially constrained cluster by using SKATER method.

7.1 Convert into SpatialPolygonsDataFrame

shan_sp <- as_Spatial(shan_sf)

7.2 Neighbour List

7.2.1 Compute Neighbour List

shan.nb <- poly2nb(shan_sp)
summary(shan.nb)
Neighbour list object:
Number of regions: 55 
Number of nonzero links: 264 
Percentage nonzero weights: 8.727273 
Average number of links: 4.8 
Link number distribution:

 2  3  4  5  6  7  8  9 
 5  9  7 21  4  3  5  1 
5 least connected regions:
3 5 7 9 47 with 2 links
1 most connected region:
8 with 9 links

7.2.2 Plot the neighbours list

plot(shan_sp, border=grey(.5))
plot(shan.nb, coordinates(shan_sp), col="blue", add=TRUE)

7.3 Compute minimum spanning tree

7.3.1 Calculate edge costs

lcosts <- nbcosts(shan.nb, shan_ict)
shan.w <- nb2listw(shan.nb, lcosts, style="B")
summary(shan.w)
Characteristics of weights list object:
Neighbour list object:
Number of regions: 55 
Number of nonzero links: 264 
Percentage nonzero weights: 8.727273 
Average number of links: 4.8 
Link number distribution:

 2  3  4  5  6  7  8  9 
 5  9  7 21  4  3  5  1 
5 least connected regions:
3 5 7 9 47 with 2 links
1 most connected region:
8 with 9 links

Weights style: B 
Weights constants summary:
   n   nn       S0       S1        S2
B 55 3025 76267.65 58260785 522016004

7.3.2 Computing minimum spanning tree

shan.mst <- mstree(shan.w)
class(shan.mst)
[1] "mst"    "matrix"
dim(shan.mst)
[1] 54  3

Results above show that:

head(shan.mst)
     [,1] [,2]      [,3]
[1,]   31   25 229.44658
[2,]   25   10 163.95741
[3,]   10    1 144.02475
[4,]   10    9 157.04230
[5,]    9    8  90.82891
[6,]    8    6 140.01101
plot(shan_sp, border=gray(.5))
plot.mst(shan.mst, coordinates(shan_sp), 
     col="blue", cex.lab=0.7, cex.circles=0.005, add=TRUE)

7.4 Computing spatially constrained clusters using SKATER method

7.4.1 Compute the spatially constrained cluster

clust6 <- skater(shan.mst[,1:2], shan_ict, method = "euclidean", 5)

7.4.2 Examine result

str(clust6)
List of 8
 $ groups      : num [1:55] 3 3 6 3 3 3 3 3 3 3 ...
 $ edges.groups:List of 6
  ..$ :List of 3
  .. ..$ node: num [1:22] 13 48 54 55 45 37 34 16 25 31 ...
  .. ..$ edge: num [1:21, 1:3] 48 55 54 37 34 16 45 31 13 13 ...
  .. ..$ ssw : num 3423
  ..$ :List of 3
  .. ..$ node: num [1:18] 47 27 53 38 42 15 41 51 43 32 ...
  .. ..$ edge: num [1:17, 1:3] 53 15 42 38 41 51 15 27 15 43 ...
  .. ..$ ssw : num 3759
  ..$ :List of 3
  .. ..$ node: num [1:11] 2 6 8 1 36 4 10 9 46 5 ...
  .. ..$ edge: num [1:10, 1:3] 6 1 8 36 4 6 8 10 10 9 ...
  .. ..$ ssw : num 1458
  ..$ :List of 3
  .. ..$ node: num [1:2] 44 20
  .. ..$ edge: num [1, 1:3] 44 20 95
  .. ..$ ssw : num 95
  ..$ :List of 3
  .. ..$ node: num 23
  .. ..$ edge: num[0 , 1:3] 
  .. ..$ ssw : num 0
  ..$ :List of 3
  .. ..$ node: num 3
  .. ..$ edge: num[0 , 1:3] 
  .. ..$ ssw : num 0
 $ not.prune   : NULL
 $ candidates  : int [1:6] 1 2 3 4 5 6
 $ ssto        : num 12613
 $ ssw         : num [1:6] 12613 10977 9962 9540 9123 ...
 $ crit        : num [1:2] 1 Inf
 $ vec.crit    : num [1:55] 1 1 1 1 1 1 1 1 1 1 ...
 - attr(*, "class")= chr "skater"

7.4.3 Check the cluster assignment

ccs6 <- clust6$groups
ccs6
 [1] 3 3 6 3 3 3 3 3 3 3 2 1 1 1 2 1 1 1 2 4 1 2 5 1 1 1 2 1 2 2 1 2 2
[34] 1 1 3 1 2 2 2 2 2 2 4 1 3 2 1 1 1 2 1 2 1 1

7.4.4 Find out how many observations are in each cluster

table(ccs6)
ccs6
 1  2  3  4  5  6 
22 18 11  2  1  1 

7.4.5 Plot the pruned tree

Lastly, we can also plot the pruned tree that shows the 5 clusters on top of the townshop area.

plot(shan_sp, border=gray(.5))
plot(clust6, coordinates(shan_sp), cex.lab=.7,
     groups.colors=c("red","green","blue", "brown", "pink"), cex.circles=0.005, add=TRUE)

7.5 Visualising the clusters in choropleth map

groups_mat <- as.matrix(clust6$groups)
shan_sf_spatialcluster <- cbind(shan_sf_cluster, as.factor(groups_mat)) %>%
  rename(`SP_CLUSTER`=`as.factor.groups_mat.`)
qtm(shan_sf_spatialcluster, "SP_CLUSTER")

For easy comparison, it will be better to place both the hierarchical clustering and spatially constrained hierarchical clustering maps next to each other.

hclust.map <- qtm(shan_sf_cluster,
                  "CLUSTER") + 
  tm_borders(alpha = 0.5) 
shclust.map <- qtm(shan_sf_spatialcluster,
                   "SP_CLUSTER") + 
  tm_borders(alpha = 0.5) 
tmap_arrange(hclust.map, shclust.map,
             asp=NA, ncol=2)