Hands-on Exercise 11

In this hands-on exercise, I learn how to model geographical accessibility using R Packages.

Nor Aisyah https://www.linkedin.com/in/nor-aisyah/
10-31-2021

1. Learning Outcomes

In this hands-on exercise, I learn how to:

2. Datasets

4 data sets will be used in this hands-on exercise, they are:

All the values of the cost related fields are in metres.

3. Install and Launch R Packages

The R packages need for this exercise are as follows:

packages = c('tmap', 'SpatialAcc','sf', 'ggstatsplot', 'reshape2','tidyverse')
for(p in packages){
  if(!require(p, character.only = T)){
    install.packages(p)
  }
  library(p, character.only = T)
}

4. Geospatial Data Wrangling

4.1 Importing geospatial data

mpsz <- st_read(dsn = "data/geospatial", layer = "MP14_SUBZONE_NO_SEA_PL")
Reading layer `MP14_SUBZONE_NO_SEA_PL' from data source 
  `C:\aisyahajit2018\IS415\IS415_blog\_posts\2021-10-31-hands-on-exercise-11\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
hexagons <- st_read(dsn = "data/geospatial", layer = "hexagons") 
Reading layer `hexagons' from data source 
  `C:\aisyahajit2018\IS415\IS415_blog\_posts\2021-10-31-hands-on-exercise-11\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 3125 features and 6 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 21506.33 xmax: 50010.26 ymax: 50256.33
Projected CRS: SVY21 / Singapore TM
eldercare <- st_read(dsn = "data/geospatial", layer = "ELDERCARE") 
Reading layer `ELDERCARE' from data source 
  `C:\aisyahajit2018\IS415\IS415_blog\_posts\2021-10-31-hands-on-exercise-11\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 120 features and 19 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 14481.92 ymin: 28218.43 xmax: 41665.14 ymax: 46804.9
Projected CRS: SVY21 / Singapore TM

4.2 Updating CRS information

4.2.1 Assign correct code

mpsz <- st_transform(mpsz, 3414)
eldercare <- st_transform(eldercare, 3414)
hexagons <- st_transform(hexagons, 3414)

4.2.2 Verify CRS

st_crs(mpsz)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

Notice that the EPSG is indicated as 3414 now.

4.3 Clean and update attribute fields of geospatial data

eldercare <- eldercare %>%
  select(fid, ADDRESSPOS) %>%
  mutate(capacity = 100)
hexagons <- hexagons %>%
  select(fid) %>%
  mutate(demand = 100)

5. Aspatial Data Handling and Wrangling

5.1 Importing Distance Matrix

ODMatrix <- read_csv("data/aspatial/OD_Matrix.csv", skip = 0)

5.2 Tidy distance matrix

5.2.1 Transform matrix

distmat <- ODMatrix %>%
  select(origin_id, destination_id, total_cost) %>%
  spread(destination_id, total_cost)%>%
  select(c(-c('origin_id')))

5.2.2 Convert from m to km

distmat_km<-as.matrix(distmat/1000)

6. Modelling and Visualising Accessibility using Hansen Method

6.1 Computing Hansen’s accessibility

acc_Hansen <- data.frame(ac(hexcen$demand,
                            eldercare$capacity,
                            distmat_km, 
                            d0 = 50,
                            power = 2, 
                            family = "Hansen"))

6.2 Rename column name

colnames(acc_Hansen) <- "accHansen"

6.3 Convert to tibble format

acc_Hansen <- tbl_df(acc_Hansen)

6.4 Join acc_Hansen with hexagons

hexagon_Hansen <- bind_cols(hexagons, acc_Hansen)

6.5 Single code chunk version of above codes

acc_Hansen <- data.frame(ac(hexagons$demand,
                            eldercare$capacity,
                            distmat_km, 
                            d0 = 50,
                            power = 2, 
                            family = "Hansen"))
colnames(acc_Hansen) <- "accHansen"
acc_Hansen <- tbl_df(acc_Hansen)
hexagon_Hansen <- bind_cols(hexagons, acc_Hansen)

6.6 Visualising Hansen’s accessibility

6.6.1 Extract map extend

mapex <- st_bbox(hexagons) #view extent

6.6.2 Plot eldercare

tmap_mode("plot")
tm_shape(hexagon_Hansen,
         bbox = mapex) + 
  tm_fill(col = "accHansen",
          n = 10,
          style = "quantile",
          border.col = "black",
          border.lwd = 1) +
tm_shape(eldercare) +
  tm_symbols(size = 0.1) +
  tm_layout(main.title = "Accessibility to eldercare: Hansen method",
            main.title.position = "center",
            main.title.size = 2,
            legend.outside = FALSE,
            legend.height = 0.45, 
            legend.width = 3.0,
            legend.format = list(digits = 6),
            legend.position = c("right", "top"),
            frame = TRUE) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar(width = 0.15) +
  tm_grid(lwd = 0.1, alpha = 0.5)

6.7 Statistical graphic visualisation

In this section, we are going to compare the distribution of Hansen’s accessibility values by URA Planning Region.

6.7.1 Add the planning region field

hexagon_Hansen <- st_join(hexagon_Hansen, mpsz, 
                          join = st_intersects)

6.7.2 Plot distribution

ggplot(data=hexagon_Hansen, 
       aes(y = log(accHansen), 
           x= REGION_N)) +
  geom_boxplot() +
  geom_point(stat="summary", 
             fun.y="mean", 
             colour ="red", 
             size=2)

7. Modelling and Visualising Accessibility using KD2SFCA Method

7.1 Compute KD2SFCA’s accessibility

acc_KD2SFCA <- data.frame(ac(hexagons$demand,
                            eldercare$capacity,
                            distmat_km, 
                            d0 = 50,
                            power = 2, 
                            family = "KD2SFCA"))
colnames(acc_KD2SFCA) <- "accKD2SFCA"
acc_KD2SFCA <- tbl_df(acc_KD2SFCA)
hexagon_KD2SFCA <- bind_cols(hexagons, acc_KD2SFCA)

7.2 Visualise KD2SFCA’s accessibility

tmap_mode("plot")
tm_shape(hexagon_KD2SFCA,
         bbox = mapex) + 
  tm_fill(col = "accKD2SFCA",
          n = 10,
          style = "quantile",
          border.col = "black",
          border.lwd = 1) +
tm_shape(eldercare) +
  tm_symbols(size = 0.1) +
  tm_layout(main.title = "Accessibility to eldercare: KD2SFCA method",
            main.title.position = "center",
            main.title.size = 2,
            legend.outside = FALSE,
            legend.height = 0.45, 
            legend.width = 3.0,
            legend.format = list(digits = 6),
            legend.position = c("right", "top"),
            frame = TRUE) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar(width = 0.15) +
  tm_grid(lwd = 0.1, alpha = 0.5)

7.2 Statistical graphic visualisation

Here, we will compare the distribution of KD2CFA accessibility values by URA Planning Region.

7.2.1 Add the planning region field

hexagon_KD2SFCA <- st_join(hexagon_KD2SFCA, mpsz, 
                          join = st_intersects)

7.2.2 Plot distribution

ggplot(data=hexagon_KD2SFCA, 
       aes(y = accKD2SFCA, 
           x= REGION_N)) +
  geom_boxplot() +
  geom_point(stat="summary", 
             fun.y="mean", 
             colour ="red", 
             size=2)

8. Modelling and Visualising Accessibility using Spatial Accessibility Measure (SAM) Method

8.1 Computing SAM accessibility

acc_SAM <- data.frame(ac(hexagons$demand,
                         eldercare$capacity,
                         distmat_km, 
                         d0 = 50,
                         power = 2, 
                         family = "SAM"))
colnames(acc_SAM) <- "accSAM"
acc_SAM <- tbl_df(acc_SAM)
hexagon_SAM <- bind_cols(hexagons, acc_SAM)

8.2 Visualise SAM’s accessibility

tmap_mode("plot")
tm_shape(hexagon_SAM,
         bbox = mapex) + 
  tm_fill(col = "accSAM",
          n = 10,
          style = "quantile",
          border.col = "black",
          border.lwd = 1) +
tm_shape(eldercare) +
  tm_symbols(size = 0.1) +
  tm_layout(main.title = "Accessibility to eldercare: SAM method",
            main.title.position = "center",
            main.title.size = 2,
            legend.outside = FALSE,
            legend.height = 0.45, 
            legend.width = 3.0,
            legend.format = list(digits = 3),
            legend.position = c("right", "top"),
            frame = TRUE) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar(width = 0.15) +
  tm_grid(lwd = 0.1, alpha = 0.5)

8.3 Statistical graphic visualisation

Now, we are going to compare the distribution of SAM accessibility values by URA Planning Region.

8.3.1 Add the planning region field

hexagon_SAM <- st_join(hexagon_SAM, mpsz, 
                       join = st_intersects)

8.3.2 Plot distribution

ggplot(data=hexagon_SAM, 
       aes(y = accSAM, 
           x= REGION_N)) +
  geom_boxplot() +
  geom_point(stat="summary", 
             fun.y="mean", 
             colour ="red", 
             size=2)